Is wax equivalent to tissue in electron conformal therapy planning? A Monte Carlo study of material approximation introduced dose difference

نویسندگان

  • Ray R. Zhang
  • Vladimir Feygelman
  • Eleanor R. Harris
  • Nikhil Rao
  • Eduardo G. Moros
  • Geoffrey G. Zhang
چکیده

With CT-based Monte Carlo (MC) dose calculations, material composition is often assigned based on the standard Hounsfield unit ranges. This is known as the density threshold method. In bolus electron conformal therapy (BolusECT), the bolus material, machineable wax, would be assigned as soft tissue and the electron density is assumed equivalent to soft tissue based on its Hounsfield unit. This study investigates the dose errors introduced by this material assignment. BEAMnrc was used to simulate electron beams from a Trilogy accelerator. SPRRZnrc was used to calculate stopping power ratios (SPR) of tissue to wax, SPR (tissue) (wax), and tissue to water, SPR(tissue) (water), for 6, 9, 12, 15, and 18 MeV electron beams, of which 12 and 15MeV beams are the most commonly used energies in BolusECT. DOSXYZnrc was applied in dose distribution calculations in a tissue phantom with either flat wax slabs of various thicknesses or a wedge-shaped bolus on top. Dose distribution for two clinical cases, a chest wall and a head and neck, were compared with the bolus material treated as wax or tissue. The SPR(tissue) (wax) values for 12 and 15MeV beams are between 0.935 and 0.945, while the SPR(tissue) (water) values are between 0.990 and 0.991. For a 12 MeV beam, the dose in tissue immediately under the bolus is overestimated by 2.5% for a 3 cm bolus thickness if the wax bolus is treated as tissue. For 15 MeV beams, the error is 1.4%. However, in both clinical cases the differences in the PTV DVH is negligible. Due to stopping power differences, dose differences of up to 2.5% are observed in MC simulations if the bolus material is misassigned as tissue in BolusECT dose calculations. However, for boluses thinner than 2 cm that are more likely encountered in practice, the error is within clinical tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy

Objective: The aim of this study is to evaluate the effect of tissue composition on dose distribution in electron beam radiotherapy.Methods: A Siemens Primus linear accelerator and a phantom were simulated using MCNPX Monte Carlo code. In a homogeneous cylindrical phantom, six types of soft tissue and three types of tissue-equivalent materials were investigated. The tissues included muscle (ske...

متن کامل

Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom

Background: In treating patients with radiation, the degree of accuracy for the delivery of tumor dose is recommended to be within ± 5% by ICRU in report 24. The experimental studies have shown that the presence of low-density inhomogeneity in areas such as the lung can lead to a greater than 30% change in the water dose data. Therefore, inhomogeneity corrections should be used in treatment pla...

متن کامل

Evaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code

Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...

متن کامل

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

Evaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation

Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013